Assortment on the Bases of Big-Data Analytics: A Quantitative Analysis on Retail Industry
DOI:
https://doi.org/10.31384/jisrmsse/2021.19.2.9Keywords:
technology, retail, assortment strategies, big data analyticsAbstract
Big-data analytics are treated as the future of technology andessential for the retail sector. The technology is especially beneficial for optimising daily operations and supply chain practices. However, there is a wide gap in the related literature in developing and Asian countries on this subject. On the other hand, retailing is one of the fastest-growing industries globally. Therefore, this study is specifically designed to understand the role of big data concerning the organised retail sector of Pakistan. The study’s primary objective is to assess the significance of technology in augmenting assortment strategies. However, the mediation of advanced algorithms and moderation of skilled data scientists are included in the research construct to increase research relevance to the pragmatic world. Results were determined by applying Partial least square structured equation modeling (PLS-SEM). The findings indicated that big data is a prolific constituent to optimise assortment in the retail sector of Pakistan. However, the technology would not produce the desired results without applying advanced algorithms. This study accentuates the actuality that advanced algorithms are essential to be analysed to use big-data most effectively to retrieve new information. Further studies may also be conducted in devising a comprehensive model which includes all the potent variables associated with store-layout design
Downloads
References
Ab Hamid, Sami, M. R., Sidek, W., & M, M. (2017). Discriminant validity assessment: Use of Fornell & Larcker criterion versus HTMT criterion. In Journal of Physics: Conference Series, 890(1). http://doi.org/10.1088/1742-6596/ 890/1/012163 DOI: https://doi.org/10.1088/1742-6596/890/1/012163
Afthanorhan, W. M. A. B. W. (2014). Hierarchical component using reflective-formative measurement model in partial least square structural equation modelling (Pls-Sem). International Journal of Mathematics, 2(2), 33–49.
Ahmed, M., Ullah, S., & Paracha, Z. U. H. (2012). The retail food sector in Pakistan. International Journal of Academic Research in Business and Social Sciences, 2(12), 122–128.
Ahmed, S. H. (2020). Association of Service Quality with Customer Satisfaction. Journal of Marketing Strategies, 2(2), 48–68. http://doi.org/10.52633/jms.v2i2.29 DOI: https://doi.org/10.52633/jms.v2i2.29
Ahsan, M., Hon, S. T., & Albarbar, A. (2020). Development of novel big data analytics framework for smart clothing. IEEE Access, 8, 146376–146394. DOI: https://doi.org/10.1109/ACCESS.2020.3015152
Aktas, E., & Meng, Y. (2017). An exploration of big data practices in the retail sector. Logistics, 1(2). http://doi.org/10.3390/ logistics1020012 DOI: https://doi.org/10.3390/logistics1020012
Benitez, J., Henseler, J., Castillo, A., & Schuberth, F. (2020). How to perform and report an impactful analysis using partial least squares: Guidelines for confirmatory and explanatory IS research. Information & Management, 57(2), 103168–103168. http://doi.org/10.1016/j.im.2019.05.003 DOI: https://doi.org/10.1016/j.im.2019.05.003
Blackburn, M., Alexander, J., Legan, J. D., & Klabjan, D. (2017). Big Data and the Future of R&D Management: The rise of big data and big data analytics will have significant implications for R&D and innovation management in the next decade. Research-Technology Management, 60(5), 43–51. http://doi.org/10.1080/08956308.2017.1348135 DOI: https://doi.org/10.1080/08956308.2017.1348135
Bradlow, E. T., Gangwar, M., Kopalle, P., & Voleti, S. (2017). The role of big data and predictive analytics in retailing. Journal of Retailing, 93(1), 79–95. http://doi.org/10.1016/j.jretai.2016.12.004 DOI: https://doi.org/10.1016/j.jretai.2016.12.004
Brannick, T., & Roche, W. K. (1997). Business research methods: strategies, techniques, and sources. Dublin: Oak Tree Press.
Butt, A., Suroor, M., Hameed, S., & Mehmood, K. (2021). Managing Customers: Analysing the Relationship between Customer Personality, Customer Satisfaction and Willingness to Create WOM. Journal of Entrepreneurship, Management, and Innovation, 3(2), 305–330. http://doi.org/10.52633/jemi.v3i2.79 DOI: https://doi.org/10.52633/jemi.v3i2.79
Chauhan, P., Mahajan, A., & Lohare, D. (2017). Role of Big Data in retail customer-centric marketing. National Journal of Multidisciplinary Research and Development, 2(3), 484–488.
Cheung, C. M., & Lee, M. K. (2010). A theoretical model of intentional social action in online social networks. Decision Support Systems, 49(1), 24–30. http://doi.org/10.1016/j.dss.2009.12.006 DOI: https://doi.org/10.1016/j.dss.2009.12.006
Chin, W. W. (1998). The partial least squares approach to structural equation modelling. Modern methods for business research, 295(2), 295–336.
Dekimpe, M. G. (2020). Retailing and retailing research in the age of big data analytics. International Journal of Research in Marketing, 37(1), 3–14. http://doi.org/10.1016/j.ijresmar.2019.09.001 DOI: https://doi.org/10.1016/j.ijresmar.2019.09.001
Fornell, C., & Larcker, D. F. (1981). Structural Equation Models with Unobservable Variables and Measurement Error: Algebra and Statistics. Journal of Marketing Research, 18(3), 382–382. http://doi.org/10.2307/3150980 DOI: https://doi.org/10.2307/3150980
Grewal, D., & Roggeveen, A. L. (2020). Understanding Retail Experiences and Customer Journey Management. Journal of Retailing, 96(1), 3–8. http://doi.org/10.1016/j.jretai.2020.02.002 DOI: https://doi.org/10.1016/j.jretai.2020.02.002
Hair, J., Hult, M., Ringle, C. M., & Sarstedt, M. (2016). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM) (Second ed.). . In and others (Ed.), . SAGE Publications, Inc. Sage Publications.
Hair, J. F., Ringle, C. M., & Sarstedt, M. (2013). Partial Least Squares Structural Equation Modeling: Rigorous Applications, Better Results and Higher Acceptance. Long-Range Planning, 46(1-2), 1–12. DOI: https://doi.org/10.1016/j.lrp.2013.01.001
Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2–24. DOI: https://doi.org/10.1108/EBR-11-2018-0203
Hair , J., Sarstedt, M., Ringle, C. M., & Gudergan, S. P. (2017). Advanced Issues in Partial Least Squares Structural Equation Modeling (1st ed.) (and others, Ed.). SAGE Publications, Inc. DOI: https://doi.org/10.1007/978-3-319-05542-8_15-1
Katal, A., Wazid, M., & Goudar, R. H. (2013). Big data: issues, challenges, tools, and good practices. Sixth international conference on contemporary computing (IC3), 404–409. IEEE. DOI: https://doi.org/10.1109/IC3.2013.6612229
Khurram, S., Sultan, M. F., & Turi, J. A. (2019). Linking E-Marketing Practices with the Sales of Small and Medium-Sized Enterprises. Karachi: A Moderating Role of Business Intelligence Gathering, 52(2).
Kothari, C. R. (2004). Research methodology: Methods and techniques. New Age International.
Lekhwar, S., Yadav, S., & Singh, A. (2019). Big data analytics in retail. In information and communication technology for intelligent systems (pp. 469-477). Springer, Singapore. DOI: https://doi.org/10.1007/978-981-13-1747-7_45
Long, H. (2014). An empirical review of research methodologies and methods in creativity studies (2003– 2012). Creativity Research Journal, 26(4), 427–438. http://doi.org/10.1080/10400419.2014.961781 DOI: https://doi.org/10.1080/10400419.2014.961781
Oosthuizen, K., Botha, E., Robertson, J., & Montecchi, M. (2020). Artificial intelligence in retail: The AI-enabled value chain. Australasian Marketing Journal, 29(3), 264–273. http://doi.org/10.1016/j.ausmj.2020.07.007 DOI: https://doi.org/10.1016/j.ausmj.2020.07.007
Pathirage, C. P., Amaratunga, R. D. G., & Haigh, R. P. (2008). The role of philosophical context in the development of research methodology and theory. The Built and Human Environment Review, 1(1), 1–10.
Richter, N. F., Sinkovics, R. R., Ringle, C. M., & Schlägel, C. (2016). A critical look at the use of SEM in international business research. International Marketing Review, 33(3), 376–404. http://doi.org/10.1108/imr-04-2014-0148 DOI: https://doi.org/10.1108/IMR-04-2014-0148
Ringle, C., Silva, D. D., & Bido, D. (2015). Structural Equation Modelling with the SmartPLS. . Brazilian Journal of Marketing, 13(2). http://doi.org/10.5585/remark.v13i2.2717 DOI: https://doi.org/10.5585/remark.v13i2.2717
Sanders, N. R. (2016). How to use big data to drive your supply chain. California Management Review, 58(3), 26–48. DOI: https://doi.org/10.1525/cmr.2016.58.3.26
Santoro, G., Fiano, F., Bertoldi, B., & Ciampi, F. (2019). Big data for business management in the retail industry. Management Decision, 57(8), 1980–1992. http://doi.org/10.1108/md-07-2018-0829 DOI: https://doi.org/10.1108/MD-07-2018-0829
Saunders, M., Lewis, P., Thornhill, A., & Wilson, J. (2009). Business research methods. Financial Times. Prentice Hall: London.
Shaikh, S., Sultan, M. F., Khaskhelly, F. Z., & Zehra, N. (2021). Sentiment Analysis through the application of Big Data in online Retail Industry: A Conceptual Quantitative Study from the Perspectives of IT experts. International Journal of Innovation, Creativity and Change, 15(5), 600–619.
Sijtsma, K. (2009a). On the use, the misuse, and the very limited usefulness of Cronbach’s alpha. Psychometrika, 74(1), 107. DOI: https://doi.org/10.1007/s11336-008-9101-0
Sijtsma, K. (2009b). Over misverstanden rond Cronbachs alfa en de wenselijkheid van alternatieven. Psycholoog, 44(11), 561.
Silva, B. N., Khan, M., & Han, K. (2017). Big Data Analytics Embedded Smart City Architecture for Performance Enhancement through Real-Time Data Processing and Decision-Making. Wireless Communications and Mobile Computing, 1–12. http://doi.org/10.1155/2017/9429676 DOI: https://doi.org/10.1155/2017/9429676
Silva, E. S., Hassani, H., & Madsen, D. Ø. (2020). Big Data in fashion: transforming the retail sector. Journal of Business Strategy, 41(4), 21–27. DOI: https://doi.org/10.1108/JBS-04-2019-0062
Sultan, M. F., Shaikh, S., & Imtiaz, R. (2021). Linking Big-Data Analytics with the Pricing Strategies of E-Retailers: A Quantitative Approach. GMJACS, 11(2), 11–11.
Surbakti, F. P. S., Wang, W., Indulska, M., & Sadiq, S. (2020). Factors influencing effective use of big data: A research framework. Information & Management, 57(1), 103146–103146. http://doi.org/10.1016/j.im.2019.02.001 DOI: https://doi.org/10.1016/j.im.2019.02.001
Tharwat, A., & Gabel, T. (2019). Parameters optimization of support vector machines for imbalanced data using social ski driver algorithm. Neural Computing and Applications, 32(11), 6925–6938. http://doi.org/10.1007/s00521-019-04159-z DOI: https://doi.org/10.1007/s00521-019-04159-z
Yadav, C., Wang, S., & Kumar, M. (2013). Algorithm and approaches to handle large Data-A Survey. International Journal of Computer Science and Network, 2(3).
Yang, K., & Banamah, A. (2014). Quota Sampling as an Alternative to Probability Sampling? An Experimental Study. Sociological Research Online, 19(1), 56–66. http://doi.org/10.5153/sro.3199 DOI: https://doi.org/10.5153/sro.3199
Zukauskas, P., Vveinhardt, J., & Andriukaitienė, R. (2018). Philosophy and Paradigm of Scientific Research. Management Culture and Corporate Social Responsibility. http://doi.org/10.5772/intechopen.70628 DOI: https://doi.org/10.5772/intechopen.70628
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Author
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright: The Authors