
Journal of Independent Studies and Research (JISR)
Volume 5, Number2, July 2007

7

Modeling And Formal Specification Of Air Traffic Control System
Using Z Notation

Maryam Jamal and Nazir Ahmad Zafar

SZABIST
Islamabad, Pakistan

Abstract: In this paper, an abstract Air Traffic Control
(ATC) System is modeled using Formal Methods, in
terms of Z-notation. ATC system is a highly distributed
and safety critical system. For modeling of distributed
nature of ATC system, a separate queue of flying
aircrafts is maintained at each controlled airspace. To
ensure safety, it is mandated that each airspace and
runway do not exceed its capacity limit in all state
operations. Firstly, Requirements Analysis is done
using UML diagrams and then the Formal ATC system
Model is described by Z-notation. Finally, the Formal
ATC system Model is checked and analyzed with
Z/EVES tool-set.

Keywords: Advanced Software Engineering, Formal
Methods, Air Traffic Control System, Z-notation, Safety
properties

1. INTRODUCTION

Air Traffic Control (ATC) system is one of the

most challenging highly distributed and safety critical
systems. Safety critical systems [9, 10], such as ATC
system in which failure has severe consequences, the
basic need is to identify and remove errors before
system is deployed. Formal Methods make it possible to
analyze and prove certain properties of the system that
identify potential errors and inconsistencies at
specification level whereas in informal approaches
errors and inconsistencies are identified only during
testing phase. Therefore, cost of removing errors is
reduced because it increases rapidly as project
progresses. Formal Methods ensure that system is
correct and consistent with respect to its requirements
giving high confidence in system to be built.

ATC system is also a highly distributed system.
The task of safe journey of any aircraft is distributed
amongst many controllers (computer-based system),
which collaborate and direct an aircraft within their area
of control. Each controller monitors and tracks the
number of aircrafts in its area of control and ensures the
safety.

ATC system has been an important research area.
Many researchers have been contributing in this area
using various approaches. The work presented in [8] is
a case study of ATC system exploiting Layered
Architecture. The research in [3] is focused on the
detection and reduction of errors caused by a human
operator in an ATC system. The work in [12] presents
the complex ATC system as distributed cognitive
representations, which are primarily visible and external

to human actors and can be used as a source for conflict
detection.

However, from the perspective of Formal Methods
very little work has been done on complete ATC
system. The work in [6] provides a case study at a very
abstract level. It actually served as a starting point for
our work but their work is in VDM. Similarly, to
demonstrate the strength of a Model based language, an
example of a simple hypothetical
ATC system using Sum Language, dialect of Z-
Notation, and Cogito Methodology is presented in
[11]. There is also given the idea of distributed
architecture of ATC system abstractly. Our work is in
Z-notation because apart from other techniques, the rich
mathematical notations offered by Z make it possible to
reason rigorously and effectively about the behavior of
specified system. Unlike the work done in [6], our work
is more focused on distributed nature of ATC system
and covers all phases of a flight i.e takeoff till landing
ensuring safety at each phase. In [6, 11], safety in terms
of exceeding capacity limitation of airspace is defined.
Our work not only ensures capacity restriction in
airspace but also on runways and defines safety
properties in all phases of the flight from takeoff till
landing.

The main objectives of this paper are: (i) applying
formal methods to model critical systems, (ii)
integration of formal and informal approaches, and (iii)
proposing an abstract model ensuring correctness of
formal specification of the system.

In Section 2, Formal Methods are introduced. In
Section 3, Air Traffic Control system is described.
Requirements Analysis of ATC System is done in
Section 4 and Formal Model of ATC system is
presented in Section 5. Finally concluding remarks are
given in Section 6.

2. FORMAL METHODS

Formal Methods is an emerging technology that

comprises of using mathematics for writing precise and
unambiguous specifications. It provides the means for
analyzing and proving certain properties of system to be
built so that errors in specifications can be identified
and removed. Using mathematical refinements, Formal
Methods are used in every stage of development
process, ensuring the development of high quality and
correct system with respect to its requirements. There
are more than 90 techniques of Formal Methods
amongst them usage of Z-notation and Z/EVES tool-set
is demonstrated in this paper.

Journal of Independent Studies and Research (JISR)
Volume 5, Number2, July 2007

8

3. AIR TRAFFIC CONTROL SYSTEM

ATC is the supervision of airborne and taxiing
aircraft by ground-based controllers [4]. In many
countries, ATC services are provided throughout the
majority of airspace, and its services are available to all
types of aircrafts. The Airspace is divided into Zones or
Centers, and each Zone is divided into Sectors. An air
traffic controller (computer-based system), which must
collaborate with other controllers and with pilots,
manages each airspace Sector. During the flight from
source to destination, an aircraft is handed off from
Sector to Sector and Center to Center. Through out the
flight, important flight data of an aircraft is maintained.
Figure 1 shows an aircraft during phases of its flight.

ApproachTake off Departure Enroute Landing

Figure 1. Phases of a Flight

4. REQUIREMENTS ANALYSIS

The basic requirement of an ATC system is to
monitor and track aircraft from takeoff till landing. The
safety of aircraft within air or on runway needs to be
ensured. The information delivered to pilot about
weather or navigation must be provided seamlessly and
the maintenance of orderly and swift flow of air traffic
must be guaranteed.

The domain being very large and complex and
hence cannot be modeled completely in this research
paper. Our work covers the following requirements:

• Modeling of airspace and runway controlled by a
controller (Controlled Airspace and Runway).

• Modeling of controller currently on duty (On-duty
Controller) and controller to which airspace or
runway is assigned (Active Controller).

• Modeling of airspace to which controller is assigned
(Activated Airspace) and airspace in which aircrafts
are flying (Utilized Airspace).

• Monitoring of airspace so that the number of
aircrafts flying within that airspace do not exceed its
capacity limit.

• Modeling of aircrafts and maintenance of their
important flight data like speed, heading and
altitude.

• Takeoff – a vacant runway not being used by any
other aircraft is searched and assigned to the aircraft
ready to takeoff. Controller of assigned runway then
controls the aircraft.

• Departure – after successful takeoff, a controlled
airspace whose capacity is not exceeded is searched.
Aircraft now ends its contact with ground control
and is controlled by controller of assigned airspace.

• Enroute – depending on the route, aircraft is handed
off from controller to controller provided capacity
limit of receiving airspace is not violated. After each
successful handoff the aircraft closes its
communication with previous controller and
communicates with the controller of receiving
airspace.

• Approach – when an aircraft requests for its arrival,
a vacant runway is searched. If it is found, the
aircraft is connected to ground controller and
contact with airspace controller goes to an end.

• Landing – during landing it is ensured that runway
is vacant. After successful landing, the contact
between aircraft and runway controller ends.

The set of requirements, described above, are
modeled using Use-case Diagram of Unified Modeling
Language (UML) [2] as shown in Figure 2. The ellipses
inside system box represent system’s functionality as
viewed by external actor of ATC system (Controller).

System

HandOff Monitor Airspace

Controller

TakeOff

Departure

Arrival

Landing

«uses»

«uses»

«uses»

«uses»

«uses»

Figure 2. Use-case Diagram of ATC system

The Class Diagram of UML models the static
components of a system represented as boxes and
relationship between them. Figure 3 shows the Class
Diagram of ATC System.

Airspace AircraftController

Airport

Runway

has

control belongs
to

has

0..* 0..1

control

0..1 0..*

0..1

0..1

0..1

1..*
0..1

0..1

Figure 3. Class Diagram of ATC system

5. FORMAL MODEL OF ATC SYSTEM

The ATC system Model is formalized using Z-
notation [7]. The Z-notation is based upon set theory
and mathematical logic. Mathematical objects and their
properties are collected together in schemas: patterns of
declaration and constraints (invariants).

Journal of Independent Studies and Research (JISR)
Volume 5, Number2, July 2007

9

The following three abstract data types are used in
formal model. The data types of Controller and
Airspace have been taken from [6, 11].

• Controller – set of all controllers
• Airspace – set of all airspaces
• Runway – set of all runways

5.1 Core ATC Functionality

The core functionality of ATC system is specified in
a schema named ATCMain.

∪_ ATCMain _____________________
→flightControl: Airspace ♥ Controller
→groundControl: Runway ♥ Controller
→flightQueue: Airspace ♥ seq Aircraft
→ground: Aircraft ♥ Runway
→on_duty: Π Controller
→capacity: Airspace ♣ Ν
→activeController: Controller
→activatedAirspace: Airspace
→utilizedAirspace: Airspace
∩_______________
→activeController ε ran flightControl
→ ϖ activeController ε ran groundControl
→ ƒ ran flightControl Ι ran groundControl = 0
→activatedAirspace ε dom flightControl
→utilizedAirspace ε dom flightQueue
→ ƒ ©flightQueue utilizedAirspace〉 ⎣ 0
→dom flightControl ζ dom capacity
→ran flightControl ζ on_duty
→ran groundControl ζ on_duty
→dom flightQueue ζ dom flightControl
→ran ground ζ dom groundControl
→Αs: Airspace
→ ∞ s ε dom flightQueue ƒ s ε dom flightControl
→ ƒ s ε dom capacityƒ ©flightQueue s〉 ε Φ (Ζ ξ Π (Ζ ξ
→ :altitudeLimit:Ζ; currentAltitude:Ζ; currentSpeed:Ζ;
→ destination: Airspace;heading: Ζ; source: Airspace;
→ speedLimit: Ζ∫)) ƒ # ©(flightQueue s)〉 ⎠ capacity s
→Αs1, s2: Airspace
→ ∞ s1 ε dom flightControl ƒ s1 ε dom flightQueue
→ ƒ s1 ε dom capacity ƒ s2 ε dom flightControl
→ ƒ s2 ε dom capacityƒ s2 ε dom flightQueue ƒ s1 ⎣ s2
→ ⇒ ©flightQueue s1〉 Ι ©flightQueue s2〉 = 0
∠___________________________

The state variables defined in schema are

A partial injective function of Airspace and
Controller (as in [6, 11]) is represented using the
variable flightControl. It means, there can be zero
or exactly one Controller for each Airspace. Similarly, a
Controller can control zero or exactly one Airspace at a
time.

A partial injective function of Runway and
Controller is defined as variable groundControl. It
means, there can be zero or exactly one Controller for
each Runway. Similarly, a Controller can control zero
or exactly one Runway at a time.

Unlike [11], the relation between Airspace and its
queue of Aircrafts is modeled as a partial injective
function in variable flightQueue. It means, there
can be zero or exactly one queue of flying Aircrafts for

each Airspace. Similarly, a sequence of Aircrafts is
unique for each Airspace having no duplication.

A partial injective function of Aircraft and Runway
is represented using the variable ground. It means,
there can be zero or exactly one Aircraft on each
Runway. Similarly, a Runway can have zero or one
Aircraft at a time.

The set of Controllers currently on duty is
represented as variable on_duty (as in [6, 11]).

Unlike [6, 11] the relation between Airspace and
natural number is represented as a partial function,
using the variable capacity. It means, an Airspace
can have zero or exactly one capacity limit. Similarly,
one or more Airspace can have same capacity limit.

Invariants

Some constraints specified in [6, 11] have been
enhanced and translated into Z-Notation. Following
invariants are defined in schema ATCMain.

1. A Controller is an Active Controller if it controls an
Airspace or Runway and there is no Controller
controlling an Airspace and a Runway
simultaneously.

2. An Airspace is activated if it has a Controller.
3. An Airspace is utilized if it has a Controller and one

or more Aircrafts are flying in it.
4. Each controlled Airspace must have a capacity limit.
5. The Controller controlling an Airspace must be on-

duty.
6. The Controller controlling a Runway must be on-

duty.
7. All Airspaces used during the flight must have a

Controller.
8. All Runways used in ground phase of flight must

have a Controller.
9. All controlled Airspaces with a capacity limit,

having Aircrafts, must control finite set of Aircrafts
according to its capacity.

10. All controlled Airspaces with a capacity limit,
having queue of Aircrafts, each Aircraft belongs to
exactly one Airspace at a time without duplication.

5.2 Aircraft

The schema Aircraft describes flight data of
Aircraft utilizing ATC services. Each Aircraft is
assigned a unique identification mark called
callsign, the variable Aircrafts represents a
total function. It means, each callsign is assigned to
exactly one Aircraft and no two Aircrafts have the same
callsign.
[callsign]
Aircrafts == callsign φ Aircraft
∪_ Aircraft ______________________
→source: Airspace
→destination: Airspace
→currentSpeed: Ν
→currentAltitude: Ν
→heading: Ν

Journal of Independent Studies and Research (JISR)
Volume 5, Number2, July 2007

10

→speedLimit: Ν
→altitudeLimit: Ν
∩_______________
→source ⎣ destination
→currentSpeed ⎠ speedLimit
→currentAltitude ⎠ altitudeLimit
→heading ⎠ 270
∠___________________________

The state variables defined in schema are
A Airspace from which aircraft has flown is

represented by variable source.
A Airspace to which aircraft is destined to land is

represented by variable destination.
The speed, altitude, heading, speed limit, and altitude

limit of an Aircraft are represented as natural numbers
in variables currentSpeed, currentAltitude,
heading, speedLimit, altitudeLimit
respectively.

Invariants

1. An Aircraft cannot have same source and
destination.

2. The current speed should not exceed speed limit of
Aircraft.

3. The current altitude should not exceed altitude limit
of Aircraft.

4. The heading of an aircraft should not be greater than
360 degrees.

5.3 Monitoring of Airspace

This operation is specified in a schema named
MonitorAircraft. The input airspace is monitored
so that the number of Aircrafts flying in it does not
exceed its capacity.
∪_ MonitorAirspace _________________
→ΞATCMain
→s?: Airspace
∩_______________
→s? ε dom flightControl
→s? ε dom capacity
→s? ε dom flightQueue
→©flightQueue s?〉ε Φ (Ζ ξ Π (Ζ ξ :altitudeLimit: Ζ;
→ currentAltitude: Ζ; currentSpeed: Ζ; heading: Ζ;
→ destination:Airspace;source:Airspace;speedLimit: Ζ∫))
→# ©(flightQueue s?)〉 ⎠ capacity s?
∠___________________________

Invariants

1. The input Airspace must have a Controller.
2. The input Airspace must have a capacity limit.
3. The input Airspace must have a queue of Aircrafts

flying in it.
4. The input Airspace must have a finite set of

Aircrafts flying in it.
5. The input Airspace must control Aircrafts within its

capacity limit.

5.4 Takeoff an Aircraft

This operation is specified in schema named
TakeOff. It takes an Aircraft as input that is ready for

takeoff, after clearance of all ground activities. A vacant
Runway not being used by any other Aircraft is
searched and assigned to the Aircraft given as input. If a
vacant controlled Runway is found, it is allocated to the
Aircraft. The Controller of assigned Runway now
controls the Aircraft.

∪_ TakeOff ______________________
→∆ATCMain
→a?: Aircraft
∩_______________
→Αs: Airspace
→ ∞ s ε dom flightControl ƒ s ε dom flightQueue
→ ƒ s ε dom capacity ƒ flightQueue s ε seq Aircraft
→ ƒ flightQueue s ℑ {a?} = ©〉
→a? ™ dom ground
→Εr: Runway
→ ∞ r ε dom groundControl ƒ r ™ ran ground
→ ƒ (Εa1, a2: Aircraft
→ ∞ (a1 � r ε ground
→ ƒ a2 � r ε ground
→ ⇒ a1 = a2))
→ ⇒ ground' = ground Υ {(a? � r)}
∠___________________________

Invariants

1. The input Aircraft, ready for takeoff, should not be
in flight. It means, all controlled Airspaces with a
capacity limit having a finite set of aircrafts flying in
it must not have a duplicated entry of input Aircraft.

2. The input Aircraft, ready for takeoff, should not
have a duplicated entry on any Runway.

3. Each controlled vacant Runway must be assigned to
exactly one Aircraft at a particular time.

5.5 Departure of an Aircraft

This operation is specified in a schema named
Departure. During this phase Aircraft, given as
input, enters the airspace after leaving the ground. After
successful takeoff of Aircraft, given as input, a
controlled Airspace whose capacity is not exceeded is
searched. No criteria of selecting the Airspace and
connectivity between them are specified. Aircraft now
ends its contact with ground control and is controlled by
Airspace controller.

∪_ Departure ____________________
→∆ATCMain
→a?: Aircraft
∩_______________
→Αs: Airspace
→ ∞ s ε dom flightControl ƒ s ε dom capacity
→ ƒ s ε dom flightQueueƒ flightQueue s ε seq Aircraft
→ ƒ flightQueue s ℑ {a?} = ©〉
→a? ε dom ground
→Εs: Airspace
→ ∞ s ε dom flightControl ƒ s ε dom flightQueue'
→ ƒ s ε dom flightQueue ƒ s ε dom capacity
→ ƒ flightQueue s ε seq Aircraft
→ ƒ # ©(flightQueue s)〉 < capacity s
→ ⇒ flightQueue' s = flightQueue s ⊥ ©a?〉
→ground' = {a?} ψ ground
∠___________________________

Journal of Independent Studies and Research (JISR)
Volume 5, Number2, July 2007

11

Invariants

1. All controlled Airspaces with a capacity limit
having a finite set of Aircrafts flying in it must not
have a duplicated entry of input Aircraft.

2. The Aircraft, given as input, must be successfully
taken off.

3. A controlled Airspace, with a capacity limit having
finite set of Aircrafts flying in it, is searched
provided the number of Aircrafts in it is less then its
capacity limit.

5.6 Handover an Aircraft

The concept of handover of an aircraft given in [11]
has been enhanced and translated into Z-Notation as
schema named HandOff. It is used in enroute phase of
flight. Depending on the route, Aircraft (input) is
handed off from Controller (input) to Controller (input)
provided capacity of receiving Airspace is not violated.
After successful handoff, the Aircraft closes its
communication with previous Controller and
communicates with receiving Airspace Controller.

∪_ HandOff _____________________
→∆ATCMain
→a?: Aircraft
→from?, to?: Airspace
∩_______________
→from? ε dom flightControlƒ from? ε dom flightQueue
→ ƒ from? ε dom capacity ƒ flightQueue from? ε seq Aircraft
→to? ε dom flightControl ƒ to? ε dom flightQueue
→ ƒ to? ε dom capacity
→a? ™ dom ground
→flightQueue from? ℑ {a?} ⎣ ©〉
→©flightQueue to?〉ε Φ (Ζ ξ Π(Ζξ:altitudeLimit:Ζ; heading: Ζ;
→ currentAltitude: Ζ; currentSpeed: Ζ; destination: Airspace;
→ source: Airspace; speedLimit: Ζ∫))
→# ©(flightQueue to?)〉 < capacity to?
→from? ε dom flightQueue'
→flightQueue' from? = flightQueue from? \ ©a?〉
→to? ε dom flightQueue' ƒ flightQueue to? ε seq Aircraft
→flightQueue' to? = flightQueue to? ⊥ ©a?〉
∠___________________________

Invariants

1. The Airspace, to which an Aircraft currently
belongs, must be a controlled Airspace with a
capacity limit having a queue of Aircrafts flying in
it.

2. The Airspace, to which an Aircraft is desired to go,
must be a controlled Airspace with a capacity limit
having a queue of Aircrafts flying in it.

3. The input Aircraft, ready for handoff, should not
have a duplicated entry on any Runway.

4. The input Aircraft must belong to Airspace from
which it is handed off, given as input.

5. The Airspace, to which Aircraft is handed off, must
have finite set of Aircrafts flying in it.

6. The Airspace, to which Aircraft is handed off, must
have Aircrafts less than its capacity limit.

5.7 Descent of an Aircraft

This operation is specified in a schema named
Approach. During this phase, the Aircraft leaves
Airspace and enter the Airspace of destination Airport
also known as Terminal Airspace. The Aircraft given as
input requests arrival and a controlled vacant Runway is
searched. If found Aircraft is connected to ground
Controller and contact with airspace Controller ends.

∪_ Approach ______________________
→∆ATCMain
→a?: Aircraft
∩_______________
→a? ™ dom ground
→Εs: Airspace
→ ∞ s ε dom flightControl ƒ s ε dom flightQueue
→ ƒ s ε dom capacity ƒ flightQueue s ε seq Aircraft
→ ƒ s ε dom flightQueue' ƒ flightQueue s ℑ {a?} ⎣ ©〉
→ ⇒ flightQueue' s = flightQueue s \ ©a?〉
→Εr: Runway
→ ∞ r ε dom groundControl ƒ r ™ ran ground
→ ⇒ ground' = ground Υ {(a? � r)}
∠____________________________

Invariants

1. The input Aircraft, ready for arrival, should not have
a duplicated entry on any Runway.

2. The input Aircraft must belong to a controlled
Airspaces with a capacity limit having a finite set of
Aircrafts flying in it.

3. The Runway assigned to the Aircraft must be
controlled and vacant.

5.8 Landing

This operation is specified in a schema named
Landing. It deals with landing of Aircraft, given as
input. During landing it is ensured that Runway is
controlled and vacant. It is also made sure that it is
assigned to exactly one Aircraft at a time. After
successful landing, the contact of Aircraft and Runway
controller ends.

∪_ Landing _______________________
→∆ATCMain
→a?: Aircraft
∩_______________
→Αs: Airspace
→ ∞ s ε dom flightControl ƒ s ε dom capacity
→ ƒ s ε dom flightQueue ƒ flightQueue s ε seq Aircraft
→ ƒ flightQueue s ℑ {a?} = ©〉
→a? ε dom ground
→Εr: Runway
→ ∞ r ε dom groundControl
→ ƒ a? � r ε ground
→ ƒ (Εa1, a2: Aircraft
→ ∞ (a1 � r ε ground ƒ a2 � r ε ground
→ ⇒ a1 = a2))
→ground' = {a?} ψ ground
∠____________________________

Invariants

1. All controlled Airspaces with a capacity limit
having a finite set of Aircrafts flying in it must not
have a duplicated entry of input Aircraft.

Journal of Independent Studies and Research (JISR)
Volume 5, Number2, July 2007

12

2. There must be a Runway assigned to the input
Aircraft.

3. The Runway assigned to Aircraft must be controlled
and vacant and there must be exactly one aircraft on
the Runway.

The model is verified and strengthened using
Z/EVES Toolset [5]. Z/EVES is a tool for analyzing Z
specifications. It can be used for parsing, type checking,
domain checking, schema expansion, precondition
calculation, refinement proofs, and proving theorems.
While proving our ATC system model in Z-EVES,
some proof errors were identified and removed. Thus,
our Model has been checked and strengthened by the
Tool.

6. CONCLUSION

The power of applying Formal Methods in

modeling of a complex, highly distributed and safety
critical system is shown, which was one of the
objectives of our research. The Informal Model of ATC
system developed using UML Diagrams, has been
formalized in terms of Z-notation. It shows informal
approaches can be integrated into Formal Approaches,
which was another objective of our research. By
applying Formal Methods, a deeper insight of system to
be built has been achieved. The errors and
inconsistencies that were found while describing formal
system specification of ATC system have been
identified in Analysis phase those would have been
detected in implementation or testing phase using
Traditional Approaches. Therefore, the use of Formal
Methods in this research has ensured making high
quality, reliable and correct system specifications with
respect to ATC system requirements specified in
Requirements Analysis.

Another objective of the research was to apply Z-
notation for modeling of ATC system because apart
from other techniques, the rich mathematical notations
offered by Z make it possible to reason rigorously and
effectively about the behavior of specified system. Use
of Z/EVES tool-set further analyzed the model giving
high confidence in our ATC system.

Despite of all these advantages, many practitioners
are reluctant to use Formal Methods because of many
baseless myths and misconceptions prevailing in market
[1]. But Formal Methods are very important for
rigorous and concrete modeling of system. This has
been observed in development of this ATC system in
which we resolved the ambiguities and gave the
complete and consistent definition of our system
requirements.

REFERENCES

[1] Anthony Hall. “Seven Myths of Formal Methods”
IEEE Software, 7(5):104–103, September 1990.

[2] C. Larmen. “Applying UML and Patterns”. Prentice

Hall PTR, 0130925691, 2001.

[3] David Leadbetter, Peter Lindsay, Andrew Neal, and
Mike Humphreys. “Integrating the Operator into
Formal Models in the Air-Traffic Control Domain.”
Technical report 00-34, November 2000.

[4] http://travel.howstuffworks.com/air-trafficcontrol.htm

[5] I. Meisels, and M. Saaltink. “The Z/EVES Reference

Manual.” TR-97-5493-03, ORA Canada, 1997.

[6] J. C. Bicarregui, J. S. Fitzgerald, P. A. Lindsay, R.

Moore, and B. Ritchie. “Proof in VDM: A
Practitioner's Guide”. FACIT Series. Springer-Verlag,
3-540-19813-X , 1994.

[7] J. M. Spivey. “The Z Notation: A Reference

Manual”. Englewood Cliffs, NJ, Prentice-Hall, 1992.

[8] Len Bass, Paul Clements and Rick Kazman.

“Software Architecture in Practice”. 81-7808-546-1,
Pearson Education Asia, India, 2001.

[9] N. A. Zafar. “Formal Model for Moving Block

Railway Interlocking System Based on Un-Directed
Topology”. ICET06 , pp. 217-223, Peshawar, 2006.

[10] N.A. Zafar and K. Araki. “Formalizing Moving

Block Railway Interlocking System for Directed
Network.” Research Reports, Department of
Computer Science and Communication Engg.,
Kyushu University, Japan, 2003.

[11] Peter A. Lindsay. “A Tutorial Introduction to Formal

Methods”. Proceedings 3rd Australian Workshop on
Industrial Experience with Safety Critical Systems
and Software, Australian Computer Society, pp. 29-
37, 1998.

[12] R.E. Fields, P.C. Wright and P. Marti. “Air Traffic

Control as a Distributed Cognitive System: a study of
external representations”. ECCE9: Proceedings of the
Ninth European Conference on Cognitive
Ergonomics, 1998.

